

7th International Scientific Conference

Technics and Informatics in Education

Faculty of Technical Sciences, Čačak, Serbia, 25-27th May 2018

Session 3: Engineering Education and Practice UDC: 004.42

 304

Arduino Platform Capabilities in Multitasking

Environment

Dragana Mitrović1*, Siniša Ranđić1

1University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia

* dragana.mitrovic.94@gmail.com

Abstract: Arduino platforms are one of the most popular bases for the development of embedded

devices. The ability to independently design an interface with the environment, gives the Arduino

modules characteristics of an "open hardware" device. At the same time, the existence of the Arduino

IDE development environment enables easy and stable development of software. The structure of the

Arduino program does not provide direct support for the operation of such devices in the multitasking

environment. This problem has been partially overcome by the development of libraries, such as, for

example, a library that allows the use of the FreeRTOS concept with the Arduino device. The paper

presents the elements of realization of multitasking in the Arduino system operations with the support of

the FreeRTOS system concept.

Keywords: Arduino concept; multitasking; real – time operating systems; integrated

development environment.

1. INTRODUCTION

In recent years, there have been significant

changes in the development of computer

hardware. Especially in the so-called embedded

systems. In addition to the classic development

systems, designers also have devices that can be

called open-source hardware systems. Such

devices have a predefined processor-memory

structure. Regarding the implementation of the

input/output subsystem, designers have at their

disposal a number of analog and digital inputs that

can be used in accordance with the specific

requirements of the application. Due to the

standardization of computer devices

communications with the environment, such

devices also have predefined communication

interfaces such as UART, SPI, I2C, etc. One of the

most famous devices of this type is the Arduino

module family [1].

The Arduino concept, as a program for students,

was designed at the Interaction Design Institute

Ivrea in Ivrea, Italy [2]. The goal was to provide a

cost-effective and easy way to design devices that

connect with the environment through various

sensors and actuators. The Arduino concept is a

typical representative of the device with open

hardware. Most Arduino modules are based on

Atmel 8-bit AVR microcontrollers (ATmega8,

ATmega168, ATmega328, ATmega1280,

ATmega2560). The microcontrollers that are built

into Arduino modules have a boot loader that

makes it easy to upload the developed program

into a program flash memory. Each Arduino

module has a number of digital and analog I/O

pins. As a rule, a subset of digital I/O pins can be

used to generate PWM (Pulse Width Modulated)

signals.

Arduino programs can be written in any

programming language for which there are

compilers who can generate a machine code for

the desired processor. Since Arduino modules are

based on Atmel microcontrollers for the program

development, the appropriate development

environments, AVR Studio and Atmel Studio, can

be used. The Arduino project offers an integrated

development environment that has a simple

mechanism to compile and upload programs into

Arduino module. The Arduino IDE development

environment is based on the Wiring IDE platform

and the programming language Processing [4].

The great success that the Arduino concept has

achieved has led to the fact that a large number

of development systems, which are being

designed and implemented today, has the same

interface to the environment as in Arduino. Thus,

the I/O interface of the Arduino UNO module has

almost become standard.

When defining the Arduino concept and developing

the appropriate IDE software, no direct support is

provided for working in the multitasking

environment. With this in mind, one of the

important challenges, in the further development

and application of the Arduino concept, was

finding the possibility that devices based on the

Arduino module work in multitasking mode. The

aim of this paper is to point out the possibility of

developing programs for Arduino based devices,

mailto:dragana.mitrovic.94@gmail.com

Engineering Education and Practice Mitrović and Ranđić

 305

which will be able to work in a multitasking

environment.

The main efforts are focused on adding libraries

with functions designed to support multitasking

elements. Special attention is given to the work in

the multitasking environment based on the

FreeRTOS operating system.

2. ARDUINO PROGRAM CONCEPT

Developing a program for Arduino module has

been made very easy, by including necessary

libraries and writing functions that use them,

maintaining simple and short source code.

Because programming in Arduino is based on

manipulation of different sensors and actuators,

the manufacturers that develop them mostly write

libraries. Those who do not have previous

experience in programming can just call libraries

inside of Arduino code, without needing to

understand how they work. On the other hand,

more experienced programmers can change

Arduino libraries or make new ones, following

simple set of rules made by Arduino team.

Arduino libraries and programs are written in C

and C++ programming language and the editor

that is used for programming Arduino modules is

cross-platform Arduino IDE software. Structure of

simple program for Arduino is based on two

functions, setup() and loop(). After including

libraries and defining variables that will be used in

the program, the setup function is created for

initializing and setting initial values. This function

is only run once, when program is first started.

The second function, loop, allows program to

change and respond by looping constantly

functions described in it. Usually in the end of loop

function, delay() function is called to postpone the

next running of functions inside loop. Figure 1

shows the layout of the Arduino program's initial

form (new sketch).

Figure 1. A view of new Arduino sketch

This structure of Arduino program allows

execution of special tasks only on the principle of

batch processing. This means that each task is

defined as a separate function, which is then

called within the main program loop. A specific

function (task) will only be executed again when

all the next functions in the loop are executed.

The total time of one passage through the

program loop depends on the number of functions

that are executed and the execution time of each

function. The appearance of the corresponding

Arduino program is shown in Figure 2.

void task_1() {
…

}

void task_2() {
…
}
…
void task_j(){

…
}

Figure 2. Arduino program with multifunction
environment

The problem can arise if the number of tasks that

are executed is large. In this case, the time

interval between the two consecutive activations

of the same task can be long. The inability to

realize multitasking, in the basic version of the

Arduino program, imposed the need for

alternative solutions. The most common solution

is based on the inclusion of multitasking support

by adding appropriate libraries.

Based on this, it can be concluded that the

Arduino software environment does not support

concurrency, and that the interval in which a

particular task can be performed cannot be

defined. One of the solutions is the use of the

Scheduler Library, which provides support for

multiple concurrency loops. Figure 3 shows a part

of the code that illustrates multitasking in the

Arduino program using the Scheduler library.

Within the code, a special attention has to be

given to the command Scheduler.startLoop(Task1)

and Scheduler.startLoop(Task2). By default, these

commands start tasks Task1 and Task2, whose

functions are later defined. A command string, in

the basic loop, loop() defines tasks that can be

tagged with Task0. When this command is

Engineering Education and Practice Mitrović and Ranđić

 306

executed, the control is transferred to another

task. In the case of using the Scheduler library,

the transfer of control to the following tasks can

also be accomplished by calling the yield()

function, as done in the definition of Task2 task.

Figure 3. Example of multitasking using the

Scheduler library [5]

In this case, there is no separate task scheduler,

but the task management is accomplished by

directing the function yield() or delay(). Also, the

considered approach does not provide support for

real time operation, periodic activities, and there

is no possibility of preemption.

Given the availability and popularity of the

Arduino platform and development environment,

the designers have also tried to find other

solutions for multitasking. As a possible solution,

the use of the FreeRTOS operating system was

imposed. FreeRTOS [6,7] is an operating system

that is designed to support the work of embedded

devices in real time. The program was developed

with the aim of being small, simple and quick to

execute. Therefore, it does not possess some of

the advanced features such as device drivers, user

accounts and networking, encountered within

standard operating systems.

FreeRTOS support for multitasking with Arduino

platforms is accomplished by using the

appropriate library.

3. ARDUINO AND FREERTOS OPERATING

SYSTEM

Operating Systems (OS) are computer programs

that support basic computer operations, functions,

and provide services to all programs running on it.

Most OS allow multiple functions to be executed at

once, otherwise known as multitasking. This is

just an illusion and in reality, one processor core

can run only one task at the time. Behind

multitasking process there is a part of operating

system called scheduler, which rapidly switches

through each program and runs only one task at

the time. There are different types of OS based on

the rules by which schedulers execute tasks, for

example, scheduler in Unix OS provides equal

time of execution for every task [8].

Real Time Operating System (RTOS) is a type of

OS with scheduler that provides deterministic

pattern for executing tasks [9]. This scheduler is

mostly used for embedded systems that often

have real time requirements such as responding

to events in within defined time window. This

deterministic pattern is often achieved by allowing

user to assign a priority to each task that has to

be executed. One version of RTOS that can be run

on microcontrollers is FreeRTOS with real-time

scheduler [10].

For realization of the multitasking on Arduino

platforms, it is necessary to install the appropriate

FreeRTOS library. In this case, the FreeRTOS

version was optimized for Arduino AVR devices.

This library has compatibility with the Arduino

environment with simultaneous access to

FreeRTOS functions.

FreeRTOS is compatible with many different

architectures and compilers, and each version has

few demo applications to help new users. To start

project with this library it is necessary to

download FreeRTOS .zip file, that contains source

code with some demo projects, and extract it. List

of all supported demos can be found on

www.freertos.org along with the official

documentation that contains instruction for

running and modifying the FreeRTOS library.

3.1 Installing and using FreeRTOS with

Arduino systems

FreeRTOS can be installed on Arduino platform

using Arduino IDE Library manager greater than

version 1.6.8. After installing it, library is included

through Sketch->Include Library menu. On

Arduino Uno device, FreeRTOS takes about 7340

bytes of its flash memory. After passing these

steps, the programmer can compile one of three

demos provided with the library. In addition to the

simple FreeRTOS functions it is possible to include

and use many other functions, like Semaphores

and similar functions.

To enable multitasking within the Arduino

program, it is necessary to include the

http://www.freertos.org/

Engineering Education and Practice Mitrović and Ranđić

 307

Arduino_FreeRTOS library. After that, it is

necessary to define tasks that will be

competitively carried out. The tasks are created

using the xTaskCreate() function [11]. By creating

tasks, the scheduler starts automatically. Within

the Arduino program, each task is defined by the

corresponding function. The principles of

multitasking implementation within the Arduino

system are shown in Figure 4.

Figure 4. The concept of multitasking
implementation in the Arduino system

using FreeRTOS

In a multitasking environment, the new task is

always ready for execution and is placed in the list

of ready tasks. The position of the tasks in the list

of prepared tasks is in principle defined by its

importance in relation to other tasks. According to

task priority, the scheduler selects the next task

to execute. During the execution of a task, it can

be completed or its assigned time can be expired,

and therefore its execution must be interrupted.

In this case, the task is returned to the list of

ready tasks. If during execution, the task cannot

obtain the desired resource, its execution is

interrupted, and the task is placed in the list of

tasks waiting for resources. On the other hand, if

during the execution the task releases the

resource, the tasks that are waiting for that

resource are transferred to the list of ready tasks.

In the case of FreeRTOS a new tasks are put into

the ready state. However, if there are no high

priority tasks, the new task will immediately go

into the running state. It should be noted that

tasks could be created both before and after the

scheduler starts. Figure 6 shows the prototype of

the xTaskCreate() function.

Figure 6. xTaskCreate() function prototype

The pvTaskCode parameter in the xTaskCreate ()

function is a pointer to the function that realizes

the task. The pcName parameter is a symbolic

task name. The stack size is defined by the

usStackDepth parameter. In addition, when

creating tasks, its priority and input and output

parameters are defined.

Transferring control to another task in a ready

state can be accomplished by calling the functions

vTaskDelay() and taskYIELD(). If the task

vTaskDelay() task is called in the running task,

the task goes into a blocked state and remains in

it a certain number of intervals, which are

specified as the function parameter. If this

parameter is zero, the task goes into a blocked

state, and running becomes a ready task with the

same priority. Figure 7 shows the prototype of the

vTaskDelay() function.

Figure 7. vTaskDelay() function prototype

Calling vTaskDelay(0) functions is equivalent to

calling the taskYIELD() function. This function

cannot be called only within the running task,

which means it cannot be called before the

scheduler starts. If there is no task with the same

priority, the control will return to the task within

which the taskYIELD() function is called.

The Watchdog Timer at Arduino microcontroller

level generates time intervals from 15ms to

500ms, necessary for multitasking. If the task is

completed before the expiration of the allocated

quantum of time, the control automatically returns

to the Scheduler.

By including FreeRTOS library in the Arduino

program, the availability of the program memory

for the user functions is reduced. An empty

Arduino program (sketch) takes 444 bytes, which

is 1% of the program memory. When FeeRTOS

library is turned on, the occupancy is 14506 bytes

or 44% of the program memory.

4. EXAMPLE OF MULTITASKING ON ARDUINO

PLATFORM

An example of three tasks can serve as an

illustration of using the FreeRTOS operating

Engineering Education and Practice Mitrović and Ranđić

 308

system to work with Arduino platforms. Tasks are

intended for:

− To turn On/Off LEDs;

− Reading the analogue value;

− Reading the digital value.

Figure 5 shows the introductory part of the

Arduino program, which includes declaring

libraries to be used or declaring variables.

Figure 5. Introductory part of Arduino program

In the declaration part of the program, the

inclusion of the library required for enabling

multitasking (Arduino_FreeRTOS) was performed.

Also, three tasks have been declared – TaskBlink,

TaskAnalogRead, and TaskDigitalRead. Within the

setup of the section besides the standard

definition of serial communication and digital

contact as an input, tasks were created as

independent entities. For each of the tasks

created, it is defined:

− Symbolic task name (Blink,

AnalogRead, DigitalRead);

− The size of the stack assigned to the

task;

− Task priority.

By executing a setup part of the program, the task

scheduler starts automatically. The main program

loop is empty, because all jobs are executed

within the tasks. At the end of the program, the

program codes of the functions that implement

the tasks are given. In Figure 6, the Blink and

DigitalRead Task codes are given.

Figure 6. The program code of the DigitalRead
task

Figure 7 shows the appearance of the

SerialMonitor, which reflects sequencing of tasks,

which are defined within the Arduino program

under consideration.

Figure 7. Display on Serial Monitor

Task 1 is executed from two steps. The first step

is to turn on the LED, after which the task is

blocked, and the control transmits to Task 2, and

then to Task 3. Blocked Task 1 takes a long

enough time to repeat the Task 2 and Task 3

execution cycle. Task 1 takes a long time to

repeat the execution. Task 2 and Task 3 cycle

activate Task 1, i.e. its second step in which the

LED turns off and goes back to the blocked state.

This creates the conditions to reactivate Task 1

and Task 2, which are executed twice before the

control takes over Task 1 again.

5. CONCLUSION

The paper presents an approach to overcoming

the problem of the lack of adequate multitasking

support for the Arduino program environment.

Engineering Education and Practice Mitrović and Ranđić

 309

Similar problems are not rarity in the field of

computer technology, so they can serve as an

example of what everything should be considered

when designing new systems. The popularity and

the breadth of the application of the Arduino

concept further influenced the significance of this

problem.

Indication of this and similar problems, as well as

the presentation of the ways of their overcoming,

creates opportunities for the development of

appropriate educational content, especially at the

master studies level. This was precisely the

motive for students of master studies in the field

of computer engineering in the Intelligent Sensors

course to deal with the problems of multitasking in

the Arduino system. The goal was to get out of

the standard framework for acquiring knowledge

on the principle of ex cathedra and to move on to

learning through practice. The results achieved

during the research, familiarization with the

problem of multitasking in the Arduino system and

ways of solving them, point to the importance and

possibilities of this approach to acquiring

knowledge.

Experience in implementing multitasking on

Arduino systems can serve in the implementation

of a similar work environment on embedded

systems based on microcontrollers. This has a

special significance when implementing devices

belonging to IoT (Internet of Things), in which the

application of multitasking can be very important

[12].

ACKNOWLEDGEMENTS

The paper presents the results of the research

within the Intelligent Sensors course at the Master

studies in the field of Computer Engineering at the

University of Kragujevac, Faculty of Technical

Sciences in Čačak. Material support to the

research was realized through the TR32043

project funded by the Ministry of Education,

Science, and Technological Development of the

Republic of Serbia.

REFERENCES

[1] Banzi, M., Shiloh, M., "The Open Source

Electronics Prototyping Platform", Maker
Media, Inc., 2015

[2] Kushner, D., "The Making of Arduino", IEEE

Spectrum, October 2011
[3] Torvalds, M., "Arduino programming: Step –

by – step Guide to Mastering Arduino

Hardware and Software", Amazon Digital
Services LLC, 2017

[4] Shiffman, D., "Learning Processing: A

Beginner's Guide to Programming Images,
Animation and Interaction", 1st Edition,
Morgan Kaufmann, 2008

[5] https://playground.arduino.cc/Code/Scheduler

[6] Cooling, J., “Real – time Operating Systems”,
Book 1 – The Theory, Independently
published, 2017

[7] Cooling, J., “Real – time Operating Systems”,
Book 2 – Practice: Using STM Cube, FreeRTOS
and the STM32 Discovery Board (The

engineering of real – time embedded
systems), Independently published, 2017

[8] Gulati, M., Gulati, M., “UNIX”, Siliconmedia,
Amazon Digital Services LLC, 2016

[9] Wang, K. C., “Embedded and Real – Time
Operating Systems”, 1st Edition, Springer,
2017

[10] Barry, R., “Mastering the FreeRTOS Real Time
Kernel, A Hands-On Tutorial Guide”, Pre-
release 161204 Edition, Real Time Engineers,

2016
[11] “FreeRTOS Reference Manual: API Functions

and Configuration Options”, Version 10.0.0
Issue 1, Amazon Web Services, 2017

[12] Serpanos, D., Wolf, M., “Internet-of-Things
Systems: Architectures, Algorithms,
Methodologies”, 1st Edition, Springer, 2017

